Development of an Extensive Patellar Osteophyte Following ACL Reconstruction

Case Report

Emile P. Wakim, MD
R. Alexander Creighton, MD
Jeff A. Fox, MD
Bernard R. Bach, Jr, MD

INTRODUCTION

This article presents a case of a large inferior patellar osteophyte, which developed after patellar tendon autograft anterior cruciate ligament (ACL) reconstruction. This extensive osteophyte formed a neo-articulation with the tibial plateau and contributed to arthrofibrosis, patellar baja, and patellar pain. This is an unusual complication following patellar tendon harvesting for ACL reconstruction.

CASE REPORT

In September 2001, a 30-year-old woman with loss of motion, stiffness, and patellar symptoms was referred to our office following postoperative ACL reconstruction radiographs that demonstrated a large distal patellar osteophyte (Figure 1).

Medical history was significant for an ACL injury sustained while jumping, which was confirmed clinically with a grade 2B Lachman, a grade 2 anterior drawer, and an abnormal pivot shift test. Magnetic resonance imaging revealed a medial meniscal tear along with the ACL injury. An endoscopic ACL reconstruction using ipsilateral patellar tendon autograft was performed after motion was recovered.

It was undetermined from the records whether bone graft had been used to fill the distal patellar defect, or if the peritenon was primarily closed. Four months postoperatively, the patient had a 10° flexion contracture. Arthroscopic debridement revealed extensive scar formation within the intercondylar notch and an intact graft and scar within the medial and lateral gutters. The operative report indicated that full extension had been obtained following debridement. No preoperative radiographs were obtained.

Four months following the secondary procedure, the patient tripped, “jamming” her right knee. Radiographs revealed the area of ossification. She was then referred to our office.

Physical examination revealed a 10°-120° arc of motion, an 8-cm prone heel-height difference in extension, significant reduction in patellar mobility, and normal mobility in flexion. The patient was referred to Drs Wakim, Creighton, Fox, and Bach for further evaluation and management.

Figure 1. Lateral radiograph demonstrates a patellar osteophyte extending from the distal patella prior to surgical debridement. Note the appearance of a fibrous neo-articulation with the anterior tibia.

Drs Wakim, Creighton, Fox, and Bach are from the Section of Sports Medicine, Department of Orthopedic Surgery, Rush-Presbyterian-St. Luke’s Medical Center, Chicago, Ill.
Reprint requests: Bernard R. Bach, Jr, MD, 1725 W Harrison St, Ste 1063, Chicago, IL 60612.
Lachman, anterior drawer, and pivot shift tests. Collateral laxity was not noted 0°-30°. No patellar instability was noted, and a hard osseous mass was palpated within the patellar tendon.

In October 2001, a right knee arthroscopic extensive debridement of the intercondylar notch, including expansion notchplasty, was performed. Scar tissue was noted extending into the medial lateral gutters, and the arthroscope was initially introduced into the superomedial portal to facilitate initial debridement. The arthroscope was also moved from the standard anterolateral viewing portal and the inferomedial portal to assess the extent of necessary debridement. The debridement resulted in improved patellar mobility.

The patellar tendon osteophyte was approached through the previous graft harvest incision. The osteophyte was directly adherent within tendinous tissue and was in the former of mid-third harvest site. An osteotome was used to resect the 2.6×1×0.9-cm osteophyte from the distal patella. It extended distally to the tibial plateau, and a neo-articulation with some fibrous tissue was noted distally. Histologically, the specimen was consistent with normal lamellar bone (Figure 2).

Postoperatively, the patient reported a difference in patellar mobility and a reduction of stiffness at first postoperative follow-up for suture removal. She underwent physical therapy directed at prone heel hangs, patellar mobilization, motion recovery, and closed chain quadriceps strengthening. The ACL reconstruction maintained normal stability, and the patient was seen at interval evaluations up to 21 months postoperatively.

At last follow-up, range of motion was –5° to 125° with a 3-cm prone heel-height asymmetry in extension. Postoperatively, patellofemoral mobility was markedly improved and patellofemoral symptoms were nearly resolved. KT-1000 arthrometer measurements demonstrated a 1-mm side-to-side difference on maximum manual side-to-side testing. Radiographs demonstrated no recurrence of the distal patellar osteophyte (Figure 3).

DISCUSSION

Patellar tendon autograft is the most commonly used graft for ACL reconstruction. Providing 85%-90% consistent stability, along with durability, this graft has a high patient subjective satisfaction level. However, the incidence of patellar pain has been demonstrated in numerous studies to be higher than in series using hamstring autografts.

Hamstring advocates have espoused the hamstring graft because it avoids the potential of intra- or postoperative patellar fractures, extensor mechanism disruption, patellar tendinitis, and patellar pain. In the senior author’s (B.R.B.) published clinical follow-up studies, the
incidences of patellar pain with patellar tendon autograft were 17%, 13%, and 13%, ranging from 2-4 years and 5-9 years for either two-incision or endoscopic reconstructions.\(^1\)\(^3\) The senior author’s observation is the incidence of patellar pain has been reduced with the transition to early quadriceps activation, attention directed toward recovering immediate extension and hyperextension, patellar mobilization activities, and avoiding open chain quadriceps extension exercises or isokinetic quadriceps training.

To our knowledge, this unusual complication has not been previously reported. We routinely advocate autografting of the distal patellar defect following graft harvest. In our ACL follow-up studies, postoperative radiographs occasionally demonstrate a small spur at the distal patellar region but this case is unique to our practice. We have noted a small inferior patellar spur (eg, 5-10 mm) in <5% of our follow-ups and it is not associated with patellar pain.

In a study by Kohn and Sander-Beuremann, involving 19 patients who underwent patellar defect grafting from bone tunnel reamings and peritenon closure, 36% had radiographic bone spurs at 1 year postoperatively. Additional studies focused on the intrinsic healing potential of the patellar tendon donor-site defect. Many of the histologic and imaging studies have confirmed that reliable filling of the defect with tendon-like tissue occurs over 2-3 years.\(^4\)\(^5\)\(^6\)\(^7\)\(^8\)\(^9\)\(^10\)\(^11\)\(^12\)\(^13\)\(^14\)

We did not have access to the initial operative report and, therefore, are not aware of specific technique issues that may have impacted the development of this ossification process. Additionally, because postoperative radiographs were not ordered until reinjury, we cannot comment on the temporal development of the ossification. In our practice, following an initial radiograph at suture removal to assess bone tunnel location and interference screw placement, we do not routinely order radiographs unless patients report significant patellar pain, sustain a reinjury, or return for surgical debridement for arthrofibrosis.

REFERENCES

